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AI, Machine Learning, Deep Learning
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What is machine learning & deep learning?

Maching learning: 
new programing paradigm

Classical 
programing

Rule

Data
Answer

Machine
Learning Rule

Data

Answer

초기 인공지능: 규칙을 잘 만들면 뭐든 
가능해! Symbolic AI (1950 ~ 1980)

훈련을 통해 데이터의 통계적 구조를 찾자! (1990~)



3

School의 목표는

다양한 물리학 분야에서 (특히나 HEP 분야에서도) 머신러닝, 딥러닝을 사용하고 있는데,  

• 기초를 알면 더 정확히 깊이 있게 이해하고  
• 응용 폭도 넓어진다. 

• 머신러닝/딥러닝 알고리즘의 기초를 이해한 후 간단한 문제에 응용해보자.  

• 이후의 프로그레스는, up to your interest!
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58 CHAPTER 3 Getting started with neural networks

3.1 Anatomy of a neural network
As you saw in the previous chapters, training a neural network revolves around the fol-
lowing objects:

� Layers, which are combined into a network (or model)
� The input data and corresponding targets
� The loss function, which defines the feedback signal used for learning
� The optimizer, which determines how learning proceeds

You can visualize their interaction as illustrated in figure 3.1: the network, composed
of layers that are chained together, maps the input data to predictions. The loss func-
tion then compares these predictions to the targets, producing a loss value: a measure
of how well the network’s predictions match what was expected. The optimizer uses
this loss value to update the network’s weights.

Let’s take a closer look at layers, networks, loss functions, and optimizers.

3.1.1 Layers: the building blocks of deep learning

The fundamental data structure in neural networks is the layer, to which you were
introduced in chapter 2. A layer is a data-processing module that takes as input one or
more tensors and that outputs one or more tensors. Some layers are stateless, but
more frequently layers have a state: the layer’s weights, one or several tensors learned
with stochastic gradient descent, which together contain the network’s knowledge.

 Different layers are appropriate for different tensor formats and different types of data
processing. For instance, simple vector data, stored in 2D tensors of shape (samples,
features), is often processed by densely connected layers, also called fully connected or dense
layers (the Dense class in Keras). Sequence data, stored in 3D tensors of shape (samples,
timesteps, features), is typically processed by recurrent layers such as an LSTM layer.
Image data, stored in 4D tensors, is usually processed by 2D convolution layers (Conv2D).
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Let’s run classical example - classify handwritten digits

27A first look at a neural network

2.1 A first look at a neural network
Let’s look at a concrete example of a neural network that uses the Python library Keras
to learn to classify handwritten digits. Unless you already have experience with Keras
or similar libraries, you won’t understand everything about this first example right
away. You probably haven’t even installed Keras yet; that’s fine. In the next chapter,
we’ll review each element in the example and explain them in detail. So don’t worry if
some steps seem arbitrary or look like magic to you! We’ve got to start somewhere.

 The problem we’re trying to solve here is to classify grayscale images of handwrit-
ten digits (28 × 28 pixels) into their 10 categories (0 through 9). We’ll use the MNIST
dataset, a classic in the machine-learning community, which has been around almost
as long as the field itself and has been intensively studied. It’s a set of 60,000 training
images, plus 10,000 test images, assembled by the National Institute of Standards and
Technology (the NIST in MNIST) in the 1980s. You can think of “solving” MNIST as the
“Hello World” of deep learning—it’s what you do to verify that your algorithms are
working as expected. As you become a machine-learning practitioner, you’ll see
MNIST come up over and over again, in scientific papers, blog posts, and so on. You
can see some MNIST samples in figure 2.1.

You don’t need to try to reproduce this example on your machine just now. If you wish
to, you’ll first need to set up Keras, which is covered in section 3.3.

 The MNIST dataset comes preloaded in Keras, in the form of a set of four Numpy
arrays.

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images and train_labels form the training set, the data that the model will
learn from. The model will then be tested on the test set, test_images and test_labels.

Listing 2.1 Loading the MNIST dataset in Keras

Note on classes and labels
In machine learning, a category in a classification problem is called a class. Data
points are called samples. The class associated with a specific sample is called a
label.

Figure 2.1 MNIST sample digits
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Q. classify grayscale images of handwritten digits (28 × 28 pixels)
 into their 10 categories (0 through 9) 

딥러닝계의 “hello world” :)
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2.5 Looking back at our first example
You’ve reached the end of this chapter, and you should now have a general under-
standing of what’s going on behind the scenes in a neural network. Let’s go back to
the first example and review each piece of it in the light of what you’ve learned in the
previous three sections.

 This was the input data:

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

Now you understand that the input images are stored in Numpy tensors, which are
here formatted as float32 tensors of shape (60000, 784) (training data) and (10000,
784) (test data), respectively.

 This was our network:

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))

Now you understand that this network consists of a chain of two Dense layers, that
each layer applies a few simple tensor operations to the input data, and that these
operations involve weight tensors. Weight tensors, which are attributes of the layers,
are where the knowledge of the network persists.

 This was the network-compilation step:

network.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

Now you understand that categorical_crossentropy is the loss function that’s used
as a feedback signal for learning the weight tensors, and which the training phase will
attempt to minimize. You also know that this reduction of the loss happens via mini-
batch stochastic gradient descent. The exact rules governing a specific use of gradient
descent are defined by the rmsprop optimizer passed as the first argument.

 Finally, this was the training loop:

network.fit(train_images, train_labels, epochs=5, batch_size=128)

Now you understand what happens when you call fit: the network will start to iterate
on the training data in mini-batches of 128 samples, 5 times over (each iteration over
all the training data is called an epoch). At each iteration, the network will compute the
gradients of the weights with regard to the loss on the batch, and update the weights
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Tools
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Keras, TensorFlow, Theano, CNTK

62 CHAPTER 3 Getting started with neural networks

3.2.1 Keras, TensorFlow, Theano, and CNTK

Keras is a model-level library, providing high-level building blocks for developing
deep-learning models. It doesn’t handle low-level operations such as tensor manipula-
tion and differentiation. Instead, it relies on a specialized, well-optimized tensor
library to do so, serving as the backend engine of Keras. Rather than choosing a single
tensor library and tying the implementation of Keras to that library, Keras handles the
problem in a modular way (see figure 3.3); thus several different backend engines can
be plugged seamlessly into Keras. Currently, the three existing backend implementa-
tions are the TensorFlow backend, the Theano backend, and the Microsoft Cognitive
Toolkit (CNTK) backend. In the future, it’s likely that Keras will be extended to work
with even more deep-learning execution engines.

TensorFlow, CNTK, and Theano are some of the primary platforms for deep learning
today. Theano (http://deeplearning.net/software/theano) is developed by the MILA
lab at Université de Montréal , TensorFlow (www.tensorflow.org) is developed by Google,
and CNTK (https://github.com/Microsoft/CNTK) is developed by Microsoft. Any
piece of code that you write with Keras can be run with any of these backends without
having to change anything in the code: you can seamlessly switch between the two
during development, which often proves useful—for instance, if one of these backends
proves to be faster for a specific task. We recommend using the TensorFlow backend as
the default for most of your deep-learning needs, because it’s the most widely adopted,
scalable, and production ready.

 Via TensorFlow (or Theano, or CNTK), Keras is able to run seamlessly on both
CPUs and GPUs. When running on CPU, TensorFlow is itself wrapping a low-level
library for tensor operations called Eigen (http://eigen.tuxfamily.org). On GPU,
TensorFlow wraps a library of well-optimized deep-learning operations called the
NVIDIA CUDA Deep Neural Network library (cuDNN). 

3.2.2 Developing with Keras: a quick overview

You’ve already seen one example of a Keras model: the MNIST example. The typical
Keras workflow looks just like that example:

1 Define your training data: input tensors and target tensors.
2 Define a network of layers (or model ) that maps your inputs to your targets.

Figure 3.3 The deep-learning 
software and hardware stack
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파이썬을 위한 딥러닝 프레임워크 
- 사용하기 쉬운 API, 어떤 딥러닝 모델에도 적합

고수준의 구성요소 제공

텐서 연산, 미분과 같은 저수준 연산에 최적화된 텐서 라이브러리 (딥러닝을 위한 주요 플랫폼)

저수준 딥러닝 연산 라이브러리



6

Google Colab

Google Colaboratory  

• 브라우저에서 python 작성, 실행 가능 
• 클라우드 기반의 주피터 노트북 개발 환경 
• 구글 드라이브, 도커, 리눅스, 구글 클라우드 등의 기술  

• 별도로 파이썬을 설치할 필요가 없음 

• Tensor Flow, Keras, metaplotlib, scikit-learn, pandas와 
같은 패키지가 이미 설치되어 있음 

• GPU 무료 사용 가능 

• 주피터 노트북과 비슷하지만 더 좋은 기능 제공 

• Git과 연동 가능



7

Machine Learning Algorithms

https://www.kaggle.com/getting-started/169622 

Reinforcement
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Types of Machine Learning Algorithms

지도학습 (Supervised)

비지도학습 (Unsupervised)

강화학습 (Reinforcement)

‣ 레이블된 데이터 
‣ 직접 피드백 
‣ 출력 및 예측

‣ 레이블 및 타깃 없음 
‣ 피드백 없음 
‣ 데이터에서 숨겨진 구조 찾기

‣ 결정 과정 
‣ 보상 시스템 
‣ 연속된 행동에서 학습
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지도학습 기반의 예측

• 분류: 클래스 레이블 예측  
• 회귀: 연속적인 출력 값 예측

레이블훈련 데이터

머신러닝 
알고리즘

새로운 데이터 예측 모델 예측

지도학습 (Supervised)
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지도학습: 분류

• 데이터를 기반으로, 새로운 데이터(샘플) 
분류  (클레스 레이블 예측)

• x1 = 10, x2 = 15

?

Decision boundary (규칙학습으로 결정)

지도학습 (Supervised)
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지도학습: 분류 - 예제

9

Classical example - classify handwritten digits

케라스 파이썬 라이브러리를 사용해 손글씨 숫자 분류를 학
습하는 구체적인 신경망 예제
* 흑백 손글씨 숫자 이미지를 10개의 범주로 분류 (0~9)

27A first look at a neural network

2.1 A first look at a neural network
Let’s look at a concrete example of a neural network that uses the Python library Keras
to learn to classify handwritten digits. Unless you already have experience with Keras
or similar libraries, you won’t understand everything about this first example right
away. You probably haven’t even installed Keras yet; that’s fine. In the next chapter,
we’ll review each element in the example and explain them in detail. So don’t worry if
some steps seem arbitrary or look like magic to you! We’ve got to start somewhere.

 The problem we’re trying to solve here is to classify grayscale images of handwrit-
ten digits (28 × 28 pixels) into their 10 categories (0 through 9). We’ll use the MNIST
dataset, a classic in the machine-learning community, which has been around almost
as long as the field itself and has been intensively studied. It’s a set of 60,000 training
images, plus 10,000 test images, assembled by the National Institute of Standards and
Technology (the NIST in MNIST) in the 1980s. You can think of “solving” MNIST as the
“Hello World” of deep learning—it’s what you do to verify that your algorithms are
working as expected. As you become a machine-learning practitioner, you’ll see
MNIST come up over and over again, in scientific papers, blog posts, and so on. You
can see some MNIST samples in figure 2.1.

You don’t need to try to reproduce this example on your machine just now. If you wish
to, you’ll first need to set up Keras, which is covered in section 3.3.

 The MNIST dataset comes preloaded in Keras, in the form of a set of four Numpy
arrays.

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images and train_labels form the training set, the data that the model will
learn from. The model will then be tested on the test set, test_images and test_labels.

Listing 2.1 Loading the MNIST dataset in Keras

Note on classes and labels
In machine learning, a category in a classification problem is called a class. Data
points are called samples. The class associated with a specific sample is called a
label.

Figure 2.1 MNIST sample digits
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Q. classify grayscale images of handwritten digits (28 × 28 pixels)
 into their 10 categories (0 through 9) 

딥러닝계의 “hello world” :)
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2.5 Looking back at our first example
You’ve reached the end of this chapter, and you should now have a general under-
standing of what’s going on behind the scenes in a neural network. Let’s go back to
the first example and review each piece of it in the light of what you’ve learned in the
previous three sections.

 This was the input data:

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

Now you understand that the input images are stored in Numpy tensors, which are
here formatted as float32 tensors of shape (60000, 784) (training data) and (10000,
784) (test data), respectively.

 This was our network:

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))

Now you understand that this network consists of a chain of two Dense layers, that
each layer applies a few simple tensor operations to the input data, and that these
operations involve weight tensors. Weight tensors, which are attributes of the layers,
are where the knowledge of the network persists.

 This was the network-compilation step:

network.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

Now you understand that categorical_crossentropy is the loss function that’s used
as a feedback signal for learning the weight tensors, and which the training phase will
attempt to minimize. You also know that this reduction of the loss happens via mini-
batch stochastic gradient descent. The exact rules governing a specific use of gradient
descent are defined by the rmsprop optimizer passed as the first argument.

 Finally, this was the training loop:

network.fit(train_images, train_labels, epochs=5, batch_size=128)

Now you understand what happens when you call fit: the network will start to iterate
on the training data in mini-batches of 128 samples, 5 times over (each iteration over
all the training data is called an epoch). At each iteration, the network will compute the
gradients of the weights with regard to the loss on the batch, and update the weights

Licensed to   <null>

데이터 준비

패션 MNIST
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58 CHAPTER 3 Getting started with neural networks

3.1 Anatomy of a neural network
As you saw in the previous chapters, training a neural network revolves around the fol-
lowing objects:

� Layers, which are combined into a network (or model)
� The input data and corresponding targets
� The loss function, which defines the feedback signal used for learning
� The optimizer, which determines how learning proceeds

You can visualize their interaction as illustrated in figure 3.1: the network, composed
of layers that are chained together, maps the input data to predictions. The loss func-
tion then compares these predictions to the targets, producing a loss value: a measure
of how well the network’s predictions match what was expected. The optimizer uses
this loss value to update the network’s weights.

Let’s take a closer look at layers, networks, loss functions, and optimizers.

3.1.1 Layers: the building blocks of deep learning

The fundamental data structure in neural networks is the layer, to which you were
introduced in chapter 2. A layer is a data-processing module that takes as input one or
more tensors and that outputs one or more tensors. Some layers are stateless, but
more frequently layers have a state: the layer’s weights, one or several tensors learned
with stochastic gradient descent, which together contain the network’s knowledge.

 Different layers are appropriate for different tensor formats and different types of data
processing. For instance, simple vector data, stored in 2D tensors of shape (samples,
features), is often processed by densely connected layers, also called fully connected or dense
layers (the Dense class in Keras). Sequence data, stored in 3D tensors of shape (samples,
timesteps, features), is typically processed by recurrent layers such as an LSTM layer.
Image data, stored in 4D tensors, is usually processed by 2D convolution layers (Conv2D).

Layer
(data transformation)

Input X

Weights

Layer
(data transformation)

Predictions
Y'

Weight
update

True targets
Y

Weights

Loss functionOptimizer

Loss score
Figure 3.1 Relationship between the 
network, layers, loss function, and optimizer

Licensed to   <null>

58 CHAPTER 3 Getting started with neural networks

3.1 Anatomy of a neural network
As you saw in the previous chapters, training a neural network revolves around the fol-
lowing objects:

� Layers, which are combined into a network (or model)
� The input data and corresponding targets
� The loss function, which defines the feedback signal used for learning
� The optimizer, which determines how learning proceeds

You can visualize their interaction as illustrated in figure 3.1: the network, composed
of layers that are chained together, maps the input data to predictions. The loss func-
tion then compares these predictions to the targets, producing a loss value: a measure
of how well the network’s predictions match what was expected. The optimizer uses
this loss value to update the network’s weights.

Let’s take a closer look at layers, networks, loss functions, and optimizers.

3.1.1 Layers: the building blocks of deep learning

The fundamental data structure in neural networks is the layer, to which you were
introduced in chapter 2. A layer is a data-processing module that takes as input one or
more tensors and that outputs one or more tensors. Some layers are stateless, but
more frequently layers have a state: the layer’s weights, one or several tensors learned
with stochastic gradient descent, which together contain the network’s knowledge.

 Different layers are appropriate for different tensor formats and different types of data
processing. For instance, simple vector data, stored in 2D tensors of shape (samples,
features), is often processed by densely connected layers, also called fully connected or dense
layers (the Dense class in Keras). Sequence data, stored in 3D tensors of shape (samples,
timesteps, features), is typically processed by recurrent layers such as an LSTM layer.
Image data, stored in 4D tensors, is usually processed by 2D convolution layers (Conv2D).

Layer
(data transformation)

Input X

Weights

Layer
(data transformation)

Predictions
Y'

Weight
update

True targets
Y

Weights

Loss functionOptimizer

Loss score
Figure 3.1 Relationship between the 
network, layers, loss function, and optimizer

Licensed to   <null>

지도학습 (Supervised)
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지도학습: 회귀 

예측 변수 (특성)

반응 변수 (타깃)

x가 주어졌을 때 y를 예측하기 위한 두 변수사이의 관계 학습

지도학습 (Supervised)
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지도학습: 회귀 - 예제 지도학습 (Supervised)
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비지도학습 기반의 구조 발견: Clustering (군집)

• 특성 x1, x2의 유사도를 기반으로 샘플 
그룹을 형성  

비지도학습 (Unsupervised)
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비지도학습 기반의 구조 발견: Clustering (군집) - 예제비지도학습 (Unsupervised)
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비지도학습 기반의 구조 발견: 차원 축소

• 관련 있는 정보를 대부분 유지하면서 더 작은 
차원을 가진 부분 공간으로 데이터를 압축 

비지도학습 (Unsupervised)
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강화학습

• 반복적인 시행착오 상호작용을 통해 작업 수행 방법을 학습 
• 적절한 보상을 통해 인간의 개입없이 스스로 학습하게 함 

강화학습 (Reinforcement)
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강화학습 - 예제

• 보상 - 간식, 간식, 간식…..
강아지 뇌 훈련

강화학습 (Reinforcement)
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강화학습 - 예제

• 보상 - 주차 OK!
자율주행 훈련 알고리즘

강화학습 (Reinforcement)
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16

• Training samples (sets) : Observations, Records, Instances

• Training : Model fitting, Parameter estimation,…

• Feature (x) : Descriptor, Variable, Input, Attribute,…

• Target (y): Outcome, Output, Class label, Ground truth,…

• Loss function: Cost function

• Slope (w) : weight,… 

Machine learning terminology 표기법과 규칙 (책마다 다름)

• Training samples (sets) : Observations, Records, 
Instances 

• Training : Model fitting, Parameter estimation,...  
• Feature (x) : Descriptor, Variable, Input, Attribute,… 
• Target (y): Outcome, Output, Class label, Ground 

truth,...  
• Loss function: Cost function  
• Slope (w) : weight,... 

16
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16

• Training samples (sets) : Observations, Records, Instances

• Training : Model fitting, Parameter estimation,…

• Feature (x) : Descriptor, Variable, Input, Attribute,…

• Target (y): Outcome, Output, Class label, Ground truth,…

• Loss function: Cost function

• Slope (w) : weight,… 

Machine learning terminology
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표기법과 규칙 (책마다 다름): 한국어로는…
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Milestons in the development of neural networks

http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.html

현대적 딥러닝의 
첫번째 성공: 
2011 심층 신경망
으로 학술 이미지 
분류 대회에서 우
승을 하면서!

2012년 ImageNet 대회. 1,400만개 이미지를 1천개 카테고리로 
분류: 심층합성곱신경망사용 83.6%, 2015: 96.4%

http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.html
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인공 뉴런: 초기 머신 러닝의 역사

입력신호 출력신호

1943년 매컬록, 피츠, 신경세포를 논리 회로로 표현 (MCP 뉴런모델)
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인공 뉴런: 초기 머신 러닝의 역사

특정 임계값을 넘으면 출력 신호 생성
MCP 뉴런 모델

MCP 뉴런 모델을 기반으로 퍼셉트론 
개념 발표 (프랑크 로젠블라트)
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인공 뉴런: 초기 머신 러닝의 역사 - 퍼셉트론

자동으로 최적의 가중치를 
학습하는 알고리즘 제안

가장 고전적인 선형 분류 모델
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인공 뉴런: 초기 머신 러닝의 역사

최종  input: wTx

임계 함수에 입력으로 넣고 계산

임계 
함수
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퍼셉트론 동작 예시

강의 학습 여부를 예측하기 위한 데이터 
Ref) https://kcy51156.tistory.com/52

https://kcy51156.tistory.com/52
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퍼셉트론 동작 예시
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초기 퍼셉트론 규칙

가중치 업데이트

가중치를 결정하는 방법은 다양하다! 
머신러닝 방법론: 데이터를 학습하며 모델이 스스로 적절한 가중치를 찾아나간다! → 학습
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초기 퍼셉트론 규칙

1. 가중치를 0 또는 랜덤한 작은 값으로 초기화 
2. 각 훈련 샘플 x(i)에서 다음을 계산 

- 출력값 계산 
- 가중치 업데이트
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Adaline

• Perceptron - first artificial neuron (1957) 
by Frank Rosenblatt

• Adaline (Adaptive linear neuron) (1960) 
by Bernard Widrow and Tedd Hoff

8

Artificial neuron (binary classification)

ü Adaline (Adaptive linear neuron) (1960) by Bernard Widrow and Tedd Hoff

ü Perceptron – first artificial neuron (1957) by Frank Rosenblatt

bias

bias

10

Adaline

• Weight update

• Cost function = SSE (sum of the squared error)

= Loss function
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Perceptron vs. Adaline

9

Perceptron

• Weight update

• Workflow

- If prediction is correct

- If prediction is wrong

1. 가중치를 0 또는 랜덤한 작은 값으로 초기화 
2. 각 훈련 샘플 x(i)에서 다음을 계산 

- 출력값 계산 
- 가중치 업데이트

• Perceptron - first artificial neuron (1957) 
by Frank Rosenblatt
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Adaline

10

Adaline

• Weight update

• Cost function = SSE (sum of the squared error)

= Loss function

10

Adaline

• Weight update

• Cost function = SSE (sum of the squared error)

= Loss function

10

Adaline

• Weight update

• Cost function = SSE (sum of the squared error)

= Loss function

• Cost function = SSE (sum of the squared error)

• Weight update
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Adaline

10

Adaline

• Weight update

• Cost function = SSE (sum of the squared error)

= Loss function

11

SSE derivative
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학습률의 중요성

13

Importance of Learning rate

ü Weight update using SGD

! : hyperparameter (set by manually)
w: model parameter (obtained by training)
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13

Importance of Learning rate

ü Weight update using SGD

! : hyperparameter (set by manually)
w: model parameter (obtained by training)
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확률적 경사 하강법 (Stochastic Gradient Decent)

12

• Stochastic gradient descent (SGD)

Stochastic Gradient descent (= Optimizer)
Cf. Original = batch gradient descent

(batch)

(mini batch)

(Stochastic)

Empty training set

training set sample

Iteration

All the samples in t
raining set are use
d?

No

Yes 1 epoch co
mplete

Next epoch  a
fter filing the 
samples in tra
ining set

A sample

several

everything

Slowly move 
along the des
cent
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• Stochastic gradient descent (SGD)

Stochastic Gradient descent (= Optimizer)
Cf. Original = batch gradient descent

(batch)

(mini batch)

(Stochastic)

Empty training set

training set sample

Iteration
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raining set are use
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Next epoch  a
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samples in tra
ining set

A sample

several

everything

Slowly move 
along the des
cent

• Stochastic gradient decent (SGD) • Batch gradient decent (original)

SGD: 에포크마다 훈련 데이터를 섞는 것이 좋다!

수렴 속도가 훨씬 빠르다!
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로지스틱 회귀 (Logistic regression) - 이진 분류를 위한 선형 모델
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로지스틱 회귀 (Logistic regression) - 이진 분류를 위한 선형 모델

14

Logistic Regression for binary classification



39

로지스틱 회귀 (Logistic regression) - 이진 분류를 위한 선형 모델

0.5
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로지스틱 회귀 (Logistic regression) - 이진 분류를 위한 선형 모델
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Why sigmoid function?

15

• Odds (odds in favor of a particular event) = p : the probability of the positive event

0 ≤ $ ≤ 1 → 0 ≤ $
1 − $ ≤ ∞ → −∞ ≤ )*+ $

1 − $ ≤ ∞

Therefore, one could say that

$ = 1
1 + .!"!# =

1
1 + .!$
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Why sigmoid function? - example

14

Logistic Regression for binary classification
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로지스틱 비용 함수의 가중치 학습
Weight update

• Likelihood

• Log-likelihood

• Negative log-likelihood as a cost function

Optimization = minimize negative log-likelihood (maximize likelihood)

Similar to Maximum Likelihood Estimation (MLE)

Gaussian
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로지스틱 비용 함수의 가중치 학습

17

• single class problem (= binary classification)

ϕ(z)

Logistic loss function = binary cross-entropy loss function

이해를 돕기 위해 샘플이 하나인 경우에 대해 계산해보면
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로지스틱 비용 함수의 가중치 학습

18

Weight update

: equal to ∆w in Adaline

• Log-likelihood = 
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Classification - 다중 클래스 분류 모델
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Classification - 다중 클래스 분류 모델
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Classification - 다중 클래스 분류 모델

k

k

k

여전히 평면!
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Multi-class logistic regression (beyond One-vs-All)

21

• Softmax function 
(replacing sigmoid function)

http://rasbt.github.io/mlxtend/user_guide/classifier/SoftmaxRegression/

Classification - 다중 클래스 분류 모델
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서포트 벡터 머신을 사용한 분류

• 마진: 클래스를 구분하는 초평면과 이 초평면에 가장 가까운 훈련 샘플 사이의 거리 
• 서포트 벡터 (support vector): 가장 가까운 샘플

w0 + wTxpos = 1

<latexit sha1_base64="UpxpWNx2/vJKzqUmEBIWfbOnCyg="></latexit>

w0 + wTxneg = �1

<latexit sha1_base64="fT9W8oubx7OUvqvM+I/8BA2+liQ="></latexit>

초평면
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서포트 벡터 머신을 사용한 분류

• 두 데이터로부터 가장 멀리 떨어진 decision 
boundary가 가장 적합 

➡ boundary와 데이터 간의 거리 최대화: 마진 최대화 (잘
못 분류할 가능성을 낮춰 줌 →support vector에 덜 
민감하다)
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서포트 벡터 머신을 사용한 분류

두 평면 사이의 거리
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Outliers

선형분류 불가능!
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Outliers

잉여 변수 (Slack variable) 도입 
→ξ 정도는 용인해주자!

융통성이 좀 있어야지하지 않아?

모두 잉여? No 
잉여의 총 합은 최소가 되도록 하자.
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Outliers

• 마진 안쪽에도 존재할 수 있도록 예외를 허용 
(soft margin)

< <
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SVM을 사용하여 비선형 문제풀기

XOR data set

훈련데이터를 고차원 특성 공간으로 변환 → 커널기법 사용
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Extra Slides
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Regularization
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Regularization

19

Regularization

• Cost function can be regularized by adding a simple term

Original cost function L2 regularization term

regularization hyperparameter


